Neuroanatomical phenotyping in the mouse: the dopaminergic system.
نویسنده
چکیده
Voluntary movement in animals is modulated by a number of subcortical systems. One of these resides in the basal nuclei and their associated projections and utilizes dopamine as a neurotransmitter. Apart from regulating movement, the dopaminergic axis is also involved in the control of goal-oriented behavior, cognition, and mood. Disorders of this system result in common human neurologic disorders such as Parkinson's and Huntington's diseases, as well contributing to a host of behavioral conditions, such as schizophrenia, attention deficit hyperactivity disorder, and addiction. Many individual mouse models of human dopaminergic dysfunction have been described in varying degrees of detail. However, when evaluating this region of the brain, the veterinary pathologist is confronted by a paucity of information summarizing the comparative aspects of the anatomy, physiology, and pathology of the central dopaminergic system. In this review, a systematic approach to anatomic phenotyping of the central dopaminergic system in the mouse is described and illustrated using tyrosine hydroxylase immunohistochemistry. Differences between murine neuroanatomy and comparable regions of the nonhuman primate brain are highlighted. Although the mouse is the focus of this review, conditions in domestic animals characterized by lesions within the basal nuclei and its projections are also briefly described. Murine behavioral and motor tests that accompany abnormalities of specific anatomic regions of the dopaminergic axis are summarized. Finally, we review mouse models of Parkinson's and Huntington's diseases, as well as those genetically altered mice that elucidate aspects of dopamine metabolism and receptor function.
منابع مشابه
Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملIsolation and Phenotyping of Normal Mouse Liver Dendritic Cells by an Improved Method
Introduction Dendritic cells (DCs) are bone marrow-derived cells, which migrate to lymphoid and non-lymphoid organs via blood. Liver DCs are believed to play an important role in the regulation of hepatic allograft acceptance. However, because of inherent difficulties in isolating adequate numbers of DCs from liver, limited information is available on the phenotype and functions of liver DCs. ...
متن کاملMultiple-mouse Neuroanatomical Magnetic Resonance Imaging
The field of mouse phenotyping with magnetic resonance imaging (MRI) is rapidly growing, motivated by the need for improved tools for characterizing and evaluating mouse models of human disease. MRI is an excellent modality for investigating genetically altered animals. It is capable of whole brain coverage, can be used in vivo, and provides multiple contrast mechanisms for investigating differ...
متن کاملEpilepsy and dopaminergic system
Epilepsy is accompanied with a strong change in neuronal activity not only in excitatory (glutamatergic) and inhibitory (GABAergic) neurotransmission, but also in neuromodulatory agents. Dopaminergic system, as an important neuromodulatory system of the brain, has significant effect on neuronal excitability. In addition, this system undergoes many changes in epileptic brain. Understanding the e...
متن کاملThe effect of ascorbic acid on the acquisition and expression of nicotine-induced CPP in mouse
Increased activity of mesolimbic dopaminergic system within ventral tegmental area (VTA) due to nicotine results in psychologic dependence. It has been argued that function of dopamine receptors could by affected by ascorbic acid (AA). Furthermore, AA can decrease the withdrawal syndrome signs in addicted animals and may postpone the development of nicotine dependence. In the present study, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Veterinary pathology
دوره 42 6 شماره
صفحات -
تاریخ انتشار 2005